Bond Dissociation Energies of the Acidic H-A Bonds in HA⁺ Radical Cations and in HA⁻ Radical Anions in DMSO Solution

Xian-Man Zhang* and Frederick G. Bordwell*

Contribution from the Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113

Received January 21, 1993. Revised Manuscript Received October 21, 1993®

Abstract: An equation based on a thermodynamic cycle has been used for estimating the bond dissociation energies for the cleavage of the acidic H-A bonds in radical anions to form hydride ions and radicals, i.e., $HA^{-} \rightarrow H^{-} + A^{+}$ (path d in Scheme 1). Estimates of these BDE_{HA}- values have been made for (a) eighteen 2- and 9-substituted $fluorenes, (b) six 4-GC_6H_4CHPh_2 triphenylmethanes, and related compounds, (c) eight 9-G-CH_2-substituted anthracenes, (c) eight 9-G-CH_2-substituted$ (d) nine 10-substituted 9-methylanthracenes, and (e) five substituted anilines and related N-H acids. Comparisons of these path d BDE_{HA}-- values are made with previously obtained BDE_{HA}-- values for cleavage of the acidic H–A bonds in these radical anions to form hydrogen atoms (H[•]) and A⁻ anions, i.e., $HA^{-} \rightarrow H^{+} + A^{-}$ (path c in Scheme 1). Analysis of the results indicates that substituents affect the BDE_{HA} values so as to (a) increase the BDE_{HA} values by both paths c and d by stabilizing the initial radical anions, and/or (b) decrease the BDE_{HA} -values for reaction by path c and d by stabilizing the initial radical anions, and/or (b) decrease the BDE_{HA}- values for reaction by path d by stabilizing the radical products. The results indicate that reactions by either path c or path d may be viable, the favored pathway depending on the nature of the substituents.

The radical cations, HA++, and radical anions, HA+-, formed from weak acids, HA, by loss or addition of one electron are both important and highly reactive intermediates in chemistry.¹ Thermodynamic cycles have been devised for estimating the bond dissociation energies for their cleavage,² but only a limited number of BDEs derived from these cycles were reported. The question of modes of cleavage has also been addressed.^{2a} Two modes of cleavage of HA++ and of HA+- radical ions are conceivable, as illustrated in Scheme 1.

In the gas phase loss of a hydrogen atom from a radical cation with the formation of a cation, A^+ (path b), is the rule for hydrocarbon radical cations. For example, the CH4++ radical cation formed in a mass spectrometer by bombardment of CH4 with high-energy electrons loses a hydrogen atom to form a CH3⁺ cation as the major pathway,^{3a} and under similar conditions the C₆H₅-CH₃⁺⁺ radical cation loses a hydrogen atom to give the $C_7H_7^+$ cation as the exclusive pathway.^{3b} On the other hand, in aqueous or dimethyl sulfoxide (DMSO) solution the enormous solvation energy of the proton $[\Delta G_t(H^+)_g$ to $(H^+)_{aq}$ is -260.5 kcal/mol,⁴ and $\Delta G^{\circ}_{t}(H^{+})_{g}$ to $(H^{+})_{DMSO}$ is -265 kcal/mol⁵] is much greater than the solvation energy for any organic cation, and strongly favors path a over path b. (Henceforth, kcal/mol will be abbreviated as kcal.) Cleavage of the acidic H-A bonds in radical cations by path a has been observed experimentally in

 Abstract published in Advance ACS Abstracts, December 15, 1993.
 (1) Chanon, M.; Rajzmann, M.; Chanon, F. Tetrahedron 1990, 46, 6193– 6299

New York, 1975; p 192. (5) Cox, B.G. Annu. Rep. Prog. Chem. Sect. A: Phys. Inorg. Chem. 1973,

70, 249-274.

Scheme 1

$$HA^{\bullet+} \xrightarrow{\text{path } a} H^{+} + A^{\bullet}$$

$$HA^{\bullet+} \xrightarrow{\text{path } b} H^{\bullet} + A^{+}$$

$$HA^{\bullet-} \xrightarrow{\text{path } c} H^{\bullet} + A^{-}$$

$$HA^{\bullet-} \xrightarrow{\text{path } d} H^{-} + A^{\bullet}$$

solution in a number of instances.⁶⁻⁹ Furthermore, radical cations derived from a number of hydrocarbon acids have been shown to have highly negative $pK_{HA^{++}}$ values,^{6b} which means that the acidic H-A bonds will dissociate spontaneously to form proton (H^+) and radical (A^*) in H₂O, DMSO, and like solvents.

On the other hand, estimates for cleavage of the acidic H-A bonds in radical cations HA^{+} in DMSO by path b have shown these BDEs to be endothermic, and for seventeen 9-(dialkylamino)fluorenyl radical cations (9-R2NFlH)*+ containing carboncentered radicals stabilized by adjacent dialkylamino groups, the BDE_{HA} + values were estimated to be 30–50 kcal smaller than the BDE_{HA} values for the corresponding parent 9-R₂NFlH acids.^{10a} The relatively small BDE_{HA**} values for these radical cations (22-40 kcal) were correlated with the stabilization of the A⁺

(10) (a) Zhang, X.-M.; Bordwell, F. G. J. Org. Chem. 1992, 57, 4163-4168. (b) Bordwell, F. G.; Zhang, X.-M. Acc. Chem. Res. 1993, 26, 510-517.

© 1994 American Chemical Society

^{(2) (}a) Griller, D.; Simões, M.; Mulder, J. A.; Sim, B. A.; Wayner, D. D. M. J. Am. Chem. Soc. 1989, 111, 7872-7876. (b) Parker, V. D. Acta Chem. Scand. 1992, 46, 1133. (c) Wayner, D. D. M.; Parker, V. D. Acc. Chem. Res. Statut 1993, 26, 287-294. (d) Handoo, K. L.; Cheng, J.-P.; Parker, V. D. J. Am.
 Chem. Soc. 1993, 115, 5067-5072.
 (3) (a) Vollhardt, K. P. C. Organic Chemistry; W. H. Freeman and Co.:

New York; 1987; 826–832. (b) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds, 3rd ed.; Wiley and Sons: New York, 1974; Chapter 2. (4) Gordon, J. E. The Organic Chemistry of Electrolyte Solutions; Wiley:

^{(6) (}a) Nicholas, A. M. de P.; Arnold, D. R. Can. J. Chem. 1982, 60, 2165-2179. (b) Bordwell, F. G.; Bausch, M. J. J. Am. Chem. Soc. 1986, 108, 2473-2474.

^{(7) (}a) Portis, L. C.; Bhat, U. V.; Mann, C. K. J. Org. Chem. 1970, 35, 2175-2178.
(b) Chow, Y. L.; Danen, W. C.; Nelsen, S. F.; Rosenblatt, D. H. Chem. Rev. 1978, 78, 243-274.
(c) Shaefer, C. G.; Peters, K. S. J. Am. Chem. Soc. 1980, 102, 7566-7567.

^{(8) (}a) Silverman, R. B.; Hoffman, S. J.; Catus, W. B., III J. Am. Chem. Soc. 1980, 102, 7126-7128. (b) Silverman, R. B.; Banik, G. M. J. Am. Chem. Soc. 1987, 109, 2219-2222

^{(9) (}a) Lewis, F. D.; Ho, T.-I. J. Am. Chem. Soc. 1977, 99, 7991-7996. (b) Lewis, F. D.; Ho, T.-I.; Simpson, J. T. J. Org. Chem. 1981, 46, 1077-1082. (c) Hub, W.; Schneider, S.; Dörr, F.; Oxman, J. D.; Lewis, F. D. J. Am. Chem. Soc. 1984, 106, 708-715

cations formed by the α -dialkylamino groups. The BDE_{HA++} values for 15 substituted aromatic hydrocarbons, such as those derived from fluorene (H_2Fl) or toluene $(PhCH_3)$, were found, however, to be correlated primarily with the stabilities of the initial radical cations, H₂Fl⁺⁺ or PhCH₃⁺⁺, rather than the stabilities of the product cations, HFl⁺ or PhCH₂⁺. These BDE_{HA**} values were in the 30-50-kcal range.^{10a} The BDE_{HA**} values in DMSO for these 32 radical cations for proton loss (path a) are estimated to be smaller than those for hydrogen atom loss (path b) by about 35-75 kcal.^{10a} Similarly, the loss of a proton from neutral weak acids (HA) has also been shown to be much more favorable than the loss of a hydrogen atom in DMSO solution.10b

The choice between cleavage of the acidic H-A bonds in radical anions by paths c and d is not so clear-cut. In the gas phase path c (loss of H[•] and A⁻) is favored. For example, fragmentation of the NH₃^{•-} radical anion in the gas phase gives H• and NH₂^{-,11a} and fragmentation of the 1,3-dithiane radical anion gives H. together with fragmentation products derived from the 1,3dithiane-2-carbanion.^{11b} In solution, Griller et al. concluded that "hydride loss from radical anions is generally not as favorable as hydrogen atom loss because the solvation of H⁻ and the organic anions are similar."^{2a} Their calculations of ΔG° values indicated that hydride ion and A[•] radical loss in acetonitrile $(\Delta G^{\circ}_{16})^{12}$ for toluene, fluorene, and 1-methylnaphthalene radical anions were more endothermic (32.7, 27.3, and 46.8 kcal, respectively) than for A- and H• loss (7.6, 18.0, and 25.8 kcal, respectively). Also, preference for hydrogen atom and A- loss in solution has been observed by ESR13 and by electrochemical studies.14 In the latter study, the radical anions derived from fluorene and 9-methyl-, 9-phenyl-, and 9-benzylfluorenes, as well as from p-cyanoaniline, have been shown to undergo a first-order decay in N,Ndimethylformamide to form anions and molecular hydrogen. (Molecular hydrogen is evidently formed by dimerization of hydrogen atoms on the electrode surface.) In earlier papers we have used eq 1 with C = 73.3 [the reduction potential $E_{re}(HA)$]

$$BDE_{HA..}(path c) = 1.37pK_{HA} + 23.1E_{re}(HA) + C (1)$$

is referenced to the ferrocene/ferrocenium couple] to estimate homolytic bond dissociation energies of the acidic H-A bonds cleaved by path c in HA⁻⁻ radical anions derived from 19 fluorenes,^{15a} 15 triphenylmethanes,^{15a} 3 xanthenes,^{15a} p-nitrotoluene,^{15a} diphenylmethane,^{15a} bis(4-nitrophenyl)methane,^{15a} eight α -substituted 9-methylanthracenes,^{15b} and nine 10-substituted 9-methylanthracenes.^{15b} We now present a method of estimating BDE_{HA}.- vlaues for the acidic H-A bonds in HA.radical anions undergoing cleavage by loss of a hydride ion and an A^{\bullet} radical (path d) and apply it to radical anions derived from all of these compounds. These estimates suggest that in DMSO solution cleavage by path d will be competitive with that of path c for the acidic H-A bonds in some radical anions.

Results and Discussion

By using eq 2, which is based on the thermodynamic cycle shown in Scheme 2,^{2b,2d,15a} we can now estimate BDE_{HA} -- values for the acidic H-A bonds in HA^{•-} radical anions undergoing cleavage of the acidic H-A bonds to form hydride ions and A. radicals by path d.

Scheme 2

HA^{*-}
$$\rightleftharpoons$$
 HA + e⁻ E_{re}(HA)
HA \rightleftharpoons H^{*} + A^{*} BDE_{HA}
H^{*} + e⁻ \rightleftharpoons H⁻ -E_{re}(H^{*})
HA^{*-} \rightleftharpoons H⁻ + A^{*} BDE_{HA}.-(path d)

$$BDE_{HA^{\bullet}}(\text{path } d) = BDE_{HA} + 23.1[E_{re}(HA) - E_{re}(H^{\bullet})]$$
(2)

Equation 2 can be applied to a large variety of substrates because (a) BDE_{HA} values for the acidic H-A bonds in several hundred neutral weak acids have been estimated by eq 3 in our laboratory during the past six years¹⁶ and because (b) their reduction potentials $[E_{re}(HA)]$ can usually be determined by cyclic voltammetry.¹⁵ Finally, the reduction potential of the hydrogen atom, $E_{re}(H^{\bullet})$, has recently been estimated to be -0.55 V vs the NHE_{ac} . Subtraction of 0.75 V to reference to the ferrocene/ ferrocenium couple F_c/F_c^+ gives -1.30 V, which was used in reference $E_{re}(H^{\bullet})$ in eq 2.

$$BDE_{HA} = 1.37 pK_{HA} + 23.1 E_{or}(A^{-}) + 73.3$$
(3)

Estimates of BDE_{HA}- Values for the Cleavage of the Acidic H-A Bonds in Fluorenyl Radical Anions. Estimates of BDEHAvalues for the cleavage of the acidic H-A bonds in radical anions derived from fluorene, four 2-substituted fluorenes, and thirteen 9-substituted fluorenes by paths c and d are summarized in Table 1. The BDE_{HA++} values for a number of radical cations are given for comparison.

Examination of Table 1 shows that BDE_{HA}-values for cleavage of the acidic H-A bonds in fluorenyl radical anions by either path c or d are decreased by an average of 35 kcal, relative to the BDE_{HA} values for the corresponding neutral parents to which the extra electron was added. One can visualize three ways that substituents can affect BDE_{HA}- values. They can (a) increase the BDE_{HA} values for both reactions by paths c and d to the same degree by stabilizing the initial radical anion by delocalizing the negative charge and/or odd electron, (b) decrease the BDE_{HA} values for reaction by path d by stabilizing the fluorenyl radical product; and (c) decrease the BDE_{HA}-- values for reaction by path d by stabilizing the fluorenyl radical product. Introduction of the 2-CN, 2-PhSO₂, or 2-NO₂ groups (entries 3-5 in Table 1) increases the BDE_{HA} -values for H-A cleavage by either path c or path d by stabilizing the initial radical anions, i.e., decreases the reduction potentials. The smaller effect on path c than path d, which leads to $\triangle BDE$ increases of 11–14 kcal ($\triangle BDE = path$ $d BDE_{HA}$ -- path $c BDE_{HA}$ --) (column 9 in Table 1), is the result of stabilization of the fluorenide ion products, but not fluorenyl radicals. Introduction of the 9-PhSO₂ and 9-MeOCO groups (entries 8 and 9 in Table 1) has a similar effect. On the other hand, introduction of the powerful 9-RR'N electron donors (entries 12-18 in Table 1) tends to decrease the BDE_{HA}- values for path d selectively by their ability to stabilize the fluorenyl radical products, giving rise to $\triangle BDE$ values that are close to zero or even negative. The negative ΔBDE means that the loss of a hydride ion (path d) is the favorable pathway. These effects are illustrated in Scheme 3.

Note that in radical anion 1 and in the fluorenide ion product 2 the 2-CN group can stabilize the negative charge and lower the energies, whereas in radical anion 3 the 9-Me₂N group can exert little or no stabilizing effect on the radical anion but can interact

^{(11) (}a) DePuy, C. H.; Bierbaum, V. M. Acc. Chem. Res. 1981, 14, 146-153. (b) Fisher, C. L.; Kahn, S. O.; Hehre, W. J.; Caserio, M. C. J. Am. Chem. Soc. 1989, 111, 7379-7387.

⁽¹²⁾ In the text of ref 2 (p 7875) hydride loss is incorrectly referred to as (ΔG°₁₄).
 (13) Casson, D.; Tabner, B. J. J. Chem. Soc. B 1969, 887-892.
 I. B. J. Chem. J

 ^{(14) (}a) Lagu, A.; Mark, H. B., Jr.; Jesorek, J. R. J. Org. Chem. 1977, 42, 1603-1067.
 (b) Borhani, K. J.; Hawley, M. D. J. Electroanal. Chem. 1979, 1603-1067. 101, 407-417.

^{(15) (}a) Zhang, X.-M.; Bordwell, F. G. J. Am. Chem. Soc. 1992, 114, 9787–9792. (b) Zhang, X.-M.; Bordwell, F. G.; Bares, J. E.; Cheng, J.-P.; Petrie, B. C. J. Org. Chem. 1993, 58, 3051–3059.

⁽¹⁶⁾ Bordwell, F. G.; Cheng, J.-P.; Ji, G.-Z.; Satish, A. V.; Zhang, X.-M. J. Am. Chem. Soc. 1991, 113, 9790-9795 and references cited therein.

Table 1. Bond Dissociation Energies of the Acidic C-H Bonds in Fluorenes and Their Corresponding Radical Anions and Cations

						BDI	E _{HA} ⊷			
no.	substrates	pK _{HA} ª	$E_{ox}(A^{-})^{b}$	$E_{\rm re}({\rm HA})^d$	BDE _{HA} f	path c ^s	path d ^h	ΔBDE^{i}	$BDE_{HA^{++j}}$ (path b)	
1	fluorene	22.6	-1.069	-3.006	79.5	35	40	5	56	
2	2-Me ₂ N	24.2	-1.123	3.142	80.5	34	38	4		
3	2-CN	18.2	-0.813	-2.313	79.5	45	56	11		
4	2-PhSO ₂	18.1	-0.792	-2.236	80	46.5	58	11.5		
5	2-NO ₂	17.0	-0.684	-1.418e	81	64	78	14		
6	9-Ph	17.9	-1.028	-3.032	74	28	34	6	46	
7	9-mesityl	18.6	-1.049°	-3.080	74.5	27.5	33.5	6	50	
8	9-PhSO ₂	11.55	-0.309	-2.132	82	40	63	23		
9	9-MeOČO	10.35	-0.492	-2.847	76	22	40.5	18.5		
10	9-EtS	17.5	-0.993	-2.493	74.5	40	47	7		
11	9-EtO	22.0	-1.322	-2.589	73	44	43	-1		
12	9-Me ₂ N	22.5	-1.418°	-2.868	71.5	38	35	-3	37	
13	$9-c-C_4H_8N$	22.2	-1.553c	-2.894	68	37	31	6	35	
14	9-c-C5H10N	22.5	-1.382 ^c	-2.863	72	38	36	-2	39	
15	9-PhCH(Me)N	22.0	-1.334 ^c	-2.822	72.5	38	37.5	-0.5	39	
16	$9-(i-Pr)_2N$	20.8	-1.242 ^c	-2.955	73	33.5	35	1.5	40	
17	9-C(Me)(H)(CH ₂) ₃ C(Me)(H)N	19.4	-1.198°	-2.888	72	33	35.5	2.5	41	
18	9-C(Me) ₂ (CH ₂) ₃ C(Me) ₂ N	18.2	-1.166	-2.982	71	29	32.5	3.5	54.5	

^a In pK_{HA} units; equilibrium acidities were measured in DMSO solution. ^b In volts; the irreversible oxidation potentials of the conjugate bases were measured in DMSO solution unless otherwise indicated. ^c Reversible oxidation potentials. ^d In volts; irreversible reduction potentials were measured in DMSO solution unless otherwise indicated. ^e Reversible reduction potentials. ^f In kcal/mol; homolytic bond dissociation energies of the acidic C-H bonds in weak acids; estimated by using BDE_{HA} = 1.37 $pK_{HA} + 23.1E_{ox}(A^-) + 73.3$. ^g In kcal/mol; homolytic bond dissociation energies of the acidic C-H bonds in radical anions cleaved by path c, estimated by eq 1. ^h In kcal/mol; bond dissociation energies of the acidic anions cleaved by path d, estimated by eq 2. ⁱ Δ BDE = BDE_{HA}-(path d) - BDE_{HA}-(path c). ^j In kcal/mol; homolytic bond dissociation energies of the acidic C-H bonds in radical actions cleaved by path b; estimated by using BDE_{HA}+ = BDE_{HA} + 23.1[E_{ox}(A^•) - E_{ox}(A^•)].^{10a}

Scheme 3

directly with the radical ($4a \leftrightarrow 4b$). The stabilizing effect of the 2-CN group on anion 2 causes the acidity of the conjugate acid to increase by 6 kcal but has no stabilizing effect on the fluorenyl radical (the BDE_{HA} value remains constant). The stabilizing effect of the 9-Me₂N group on radical 4 is estimated to be 8 kcal (compare the BDE_{HA} values of entries 1 and 12 in Table 1), but the 9-Me₂N group has no stabilizing effect on the fluorenide anion. The other substituents in Table 1 tend to have intermediate effects. For example, the 9-Ph group decreases the BDE_{HA}-value for reaction by path c by 7 kcal by virtue of its stabilizing effect on the fluorenide ion product, but it also decreases the BDE_{HA}-value for reaction by path d by its 6 kcal stabilizing effect on the fluorenyl radical.

The results in Table 1 indicate that reactions by either path c or path d are viable pathways for substituted fluorenyl radical

anions, the favored pathway depending on the nature of the substituents.

When eq 2 is written in an expanded form, with eq 3 used in place of BDE_{HA} , and eq 1 is subtracted therefrom, the result is that $\Delta BDE = \Delta E_{ox}(A^{-})$. In other words, the choice between path d and path c is determined entirely by the relative oxidation potentials of the two anions. For example, the $E_{ox}(A^{-})$ value for the 2-CNFl⁻ ion is -0.813 V and that for the 9-Me₂NFl⁻ ion is -1.418 V (Table 1). The difference is 0.605 V or 14 kcal (compare with the $\triangle BDE$ in Table 1). This means that we can identify the path (c or d) that will be favored for cleavage of radical anions derived from families of weak acids by merely measuring the oxidation potentials of their conjugate bases—the more negative the oxidation potential the more likely that path c will be followed. The primary factors controlling the oxidation potentials of anions are (a) their basicities (there is an intrinsic linear relationship between an organic anion's basicity and its oxidation potential^{15b}) and (b) the stability of the corresponding radical formed on oxidation. The anions in Table 1 have pK_{HA} values falling in the range of about 10-25. Only those fluorenide anions with pK_{HA} values near the top of this range and those that bear R₂N groups at the 9-position (entries 11-15) have oxidation potentials negative enough $[E_{ox}(A^{-}) < -1.30 V]$ to allow path d to be favored.

Comparison of the BDEs for the cleavage of HA^{•-} radical anions derived from fluorenes with the BDEs of the radical cations derived from the same fluorene shows a close similarity in values for entries 12–16. This is not surprising since the R₂N substituents stabilize radicals, and we have seen that the size of both BDE_{HA}·+ values¹⁰ and BDE_{HA}·- values is correlated with radical product stabilities [$E_{ox}(A^{+})$ and $E_{ox}(A^{-})$, respectively].

The presence of electron-withdrawing groups (entries 3-5 and 8-10) stabilizes the anion products formed by cleavage of radical anions thus favoring path c. These substituents are expected to destabilize the corresponding radical cations and raise the BDE_{HA++} values. The presence of 9-Ph and 9-methyl groups also raise the BDE_{HA++} values compared to R₂N groups because steric constraints lower their donor properties.

Examination of Table 2 shows that only three of the substituted triphenylmethanes (entries 1-3) have oxidation potentials negative enough $[E_{ox}(A^{-}) < 1.30 \text{ V}]$ (due to the high basicities of their anions) to make path d (slightly) favored over path c. The presence

Table 2. Bond Dissociation Energies of the Acidic C-H bonds in *p*-Nitrotoluene, Triphenylmethanes, and 9-Methylanthracenes (9-MeAn) and in Their Corresponding Radical Anions and Radical Cations

						BDI	EHA-		
no.	substrates	pK _{HA} ª	$E_{ox}(A^{-})^{b}$	$E_{\rm re}({\rm HA})^d$	BDE _{HA} /	path c ^g	path d ^h	$\Delta BDE'$	$BDE_{HA} + (path b)$
1	4-PhC ₆ H ₄ CHPh ₂	29.4	-1.430	-2.889e	80.5	47	44	-3	
2	4-PhSC ₆ H₄CHPh ₂	28.3	-1.352c	-2.807e	81	47	46	-1	
3	3-CF ₃ C ₆ H ₄ CHPh ₂	28.4	-1.337°	-2.970	81	44	43	-1	
4	4-PhSO₂C ₆ H₄CHPh₂	23.6	-1.078¢	-2.457	80.5	49	54	5	
5	4-PhCOC ₆ H₄CHPh ₂	22.4	-1.067°	-2.147°	79.5	54	60	6	28
6	4-NO ₂ C ₆ H ₄ CHPh ₂	16.8	-0.682 ^c	-1.495°	80.5	62	76	14	27
7	4-NO ₂ C ₆ H ₄ CH ₃	20.4	-0.644	-1.479e	86.5	67	82 •	15	
8	(4-NO ₂ C ₆ H ₄) ₃ CH	12.7	-0.492°	-1.404 ^e	79.5	58	77	19	26
9	9-MeAn	31.1	-1.489	-2.417e	81.5	60	55.5	-4.5	
10	9-MeOCH ₂ An	30.6	-1.635	-2.295 ^e	77.5	62	54.5	-7.5	
11	9-PhOCH ₂ An	30.2	-1.513	-2.153e	80	65	60	-5	
12	9-PhSCH ₂ An	28.6	-1.362	-2.089	81	64	63	-1	
13	9-PhSO ₂ CH ₂ An	21.6	-0.786	-1.929	84.5	58	70	12	
14	9-CNCH ₂ An	19.8	-0.930	-2.203e	79	49.5	58	8.5	
15	9-PhCOCH ₂ An	18.86	-0.645	-2.271°	84	46.5	62	15.5	
16	9-NO ₂ CH ₂ An	12.8	-0.205	-1.870	86	47.5	73	25.5	
17	10-Me-9-MeAn	31.8	-1.515	-2.465°	82	60	55	-5	
18	10-MeO-9-MeAn	31.8	-1.537	-2.389e	81.5	61.5	56	-5.5	
19	10-Ph-9-MeAn	30.75	-1.456	-2.340°	82	61.5	58	-3.5	
20	10-Cl-9-MeAn	28.2	-1.347	-2.207e	81	61	60	-1	
21	10-PhS-9-MeAn	25.5	-1.188	-2.102 ^e	81	60	62.5	2.5	
22	10-PhCO-9-MeAn	22.2	-0.928	-2.071e	82	56	64.5	8.5	
23	10-CHO-9-MeAn	16.6	-0.675	-1.740 ^e	80.5	56	70.5	14.5	
24	10-CN-9-MeAn	20.0	-0.895	-1.877°	80	57	66.5	9.5	
25	10-NO ₂ -9-MeAn	13.2	-0.379	-1.475 ^e	82.5	57	78.5	21.5	

^a In pK_{HA} units; equilibrium acidities were measured in DMSO solution. ^b In volts; the irreversible oxidation potentials of the conjugate bases were measured in DMSO solution unless otherwise indicated. ^c Reversible oxidation potentials. ^d In volts; irreversible reduction potentials were measured in DMSO solution unless otherwise indicated. ^c Reversible reduction potentials. ^f In kcal/mol; homolytic bond dissociation energies of the acidic C-H bonds in weak acids; estimated by using BDE_{HA} = 1.37 pK_{HA} + 23.1E_{ox}(A⁻) + 73.3. ^g In kcal/mol; bond dissociation energies of the acidic C-H bonds in radical anions cleaved by path c, estimated by eq 1. ^h In kcal/mol; bond dissociation energies of the acidic C-H bonds in radical anions cleaved by path d, estimated by eq 2. ⁱ Δ BDE = BDE_{HA}-(path d) - BDE_{HA}-(path c). ^j In kcal/mol; bond dissociation energies of the acidic C-H bonds in radical cations cleaved by path b; estimated by using BDE_{HA}++ = BDE_{HA} + 23.1[E_{ox}(A⁺) - E_{ox}(HA)].^{10a}

Table 3. Bon	d Dissociation	Energies of the	he Acidic	N–H	Bonds in	n Anilines a	and in	The	ir Correspon	iding	Radical	Anions
--------------	----------------	-----------------	-----------	-----	----------	--------------	--------	-----	--------------	-------	---------	--------

no.	substrates	pK _{HA} a	$E_{ox}(A^{-})^{b}$	$E_{\rm re}({\rm HA})^c$	BDE _{HA} e	$BDE_{HA} - f(path c)$	$BDE_{HA} \rightarrow (path d)$	ABDE ^k
1	p-CNC ₆ H ₄ NH ₂	25.26	-0.550	-3.113	95	36	53.5	17.5
2	m-CNC ₆ H ₄ NH ₂	27.5	-0.735	-2.855	94	45	58	13
3	2,4,6-Cl ₃ C ₆ H ₂ NH ₂	23.5	-0.433	-2.637	95.5	44.5	64.5	20
4	$o-NO_2-p-ClC_6H_3NH_2$	18.9	-0.068	-1.436 ^d	97.5	66	94.5	28.5
5	$p-NO_2C_6H_4NH_2$	20.9	-0.227	-1.684 ^d	96.5	63	88	25
6	iminostilbene	26.1	-1.057	-2.501	84.5	51	57	6
7	<i>p</i> -NO ₂ C ₆ H ₄ NHPh	16.85	-0.260	-1.525^{d}	90.5	61	85	24
8	carbazole	19.9	-0.336	-3.075	93	29.5	52	22.5
9	1,3 <i>H</i> -dibenzo[<i>a</i> , <i>i</i>]carbazole	17.7	-0.207	-2.906	93	30.5	55.5	25
10	3,6-dibromocarbazole	17.15	-0.140	-2.572	93.5	37.5	64	26.5

^a In pK_{HA} units; equilibrium acidities were measured in DMSO solution. ^b In volts; the irreversible oxidation potentials of the conjugate bases were measured in DMSO solution unless otherwise indicated. ^c In volts; irreversible reduction potentials were measured in DMSO solution unless otherwise indicated. ^c In volts; irreversible reduction potentials were measured in DMSO solution unless otherwise indicated. ^c In volts; irreversible reduction potentials were measured in DMSO solution unless otherwise indicated. ^d Reversible reduction potentials. ^e In kcal/mol; homolytic bond dissociation energies of the acidic N-H bonds in weak acids; estimated by BDE_{HA} = $1.37pK_{HA} + 23.1E_{ox}(A^-) + 73.3$. ^f In kcal/mol; bond dissociation energies of the acidic N-H bonds in radical anions cleaved by path c, estimated by eq 1. ^g In kcal/mol; bond dissociation energies of the acidic N-H bonds in radical anions cleaved by path d, estimated by eq 2. ^h Δ BDE = BDE_{HA}-(path d) - BDE_{HA}-(path c).

of strong electron-withdrawing groups, as in entries 5, 6, and 8 of Table 2, leads to relatively low pK_{HA} and relatively positive $E_{ox}(A^-)$ values. This combination leads, in turn, to relatively low BDE_{HA}-+ values and relatively high BDE_{HA}-- values. The same factors are no doubt operative in the anthracenes listed in Table 2. The presence of the donor Me, MeO, PhO, PhS, Ph, or Cl groups in the anthracenes (entries 9, 10, 11, 12, 17, 18, 19, and 20) causes the $E_{ox}(A^-)$ value to become more negative than -1.30 V, however, making path d favored for BDE_{HA}-- values.

Handoo et al.^{2d} have used a sum of comparable pK_{HA} and electrochemical data for these anthracenes to obtain the free energies of hydride affinities. These values agree reasonably well with our BDE_{HA}-(enthalpy) values when one considers that about 5 kcal needs to be added to their values to take the entropy into account.

Turning to the nitrogen acids in Table 3 we see that the anion conjugate bases all have oxidation potentials more positive than -1.30 V, which indicates that path c will always be favored for cleavage of their HA⁻⁻ radical anions.

Summary. General cycles have been defined for the thermodynamics of homolytic bond cleavages in solution,^{2a} but application of these cycles to obtain BDEs for the acidic C-H bonds in HA⁺⁺ and HA⁺⁻ radical ions requires a knowledge of the homolytic bond dissociation energies (BDEs) of the parent HA acids, which hitherto have not been generally available. A simple method of obtaining these BDE_{HA} values from pK_{HA} and electrochemical data has been devised, however,¹⁶ and BDEs for the acidic C-H bonds in 35 HA⁺⁺ radical cations¹⁰ and 45 HA⁺⁻ radical anions¹⁵ have been estimated. The latter were estimated for cleavage of the acidic H-A bond to form a hydrogen atom and an anion, HA⁺⁻ \rightarrow H⁺ + A⁻ (path c). Cleavage could conceivably also occur to form a hydride ion and a radical, HA⁺⁻ \rightarrow H⁻ + A^{*} (path d), but this pathway has been considered to be less likely.^{2a} A recent estimate of the reduction potential of the hydrogen atom¹⁷ has allowed us to estimate BDEs for the cleavage of HA^{•-} radical anions by path d for comparison with the BDEs for cleavage by path c. The presence of electron-withdrawing groups in HA^{•-}, such as CN, promotes cleavage by path c since they stabilize the product anion, A⁻, whereas the presence of donor groups, such as Me₂N, promotes cleavage by path d, since they stabilize the product radicals.¹⁹ Since Δ BDE, the difference in BDEs between path d and path c, can be shown to be equal to $\Delta E_{ox}(A^-)$ for the conjugate bases of any two acids in any family,²¹ it is possible to designate an oxidation potential (-1.30 V) where the two pathways

(17) (a) The $E_{re}(H^*)$ of -0.55 V is referenced to NHE_{aq}. We added -0.75 V algebraically to this value in order to reference it to the ferrocene/ferrocenium couple.¹⁶ The difference of 0.75 V between F_c/F_c^+ and NHE_{aq} was based on the work of Breslow.¹⁸ Parker has recently estimated this difference to be 0.54 V rather than 0.75 V. If the smaller difference is accepted the ΔBDE values in Tables 1-3 will be decreased by about 5 kcal. In other words, path d will be more favorable by 5 kcal. (b) Cheng, J.-P.; Handoo, K. L.; Parker, V. D. J. Am. Chem. Soc. 1993, 115, 2655-2660.

(18) Juan, B.; Schwarz, J.; Breslow, R. J. Am. Chem. Soc. 1980, 102, 5741.

(19) Aniline and its derivatives with electron-donation groups or weak electron-accepting groups cannot be reduced in DMSO or acetonitrile solution due to the appreciable reduction of the solvents.²⁰

are equally favorable. The $E_{ox}(A^-)$ values for 5 fluorenide ions, 3 triphenyl methide ions, and 6 anthracenide ions have been found to be more negative than -1.30 V (Tables 1 and 2). The corresponding radical anions will therefore cleave preferentially by path *d*. On the other hand, none of the oxidation potentials of the conjugate bases of the nitrogen acids shown in Table 3 are more negative than -1.30 V. The corresponding radical anions for these will cleave preferentially by path *c*.

Experimental Section

The equilibrium acidities of the weak acids were measured by the overlapping indicator titration.^{10,15,16,20} The reduction potentials of the neutral weak acids and the oxidation potentials of the conjugate anions were determined by cyclic voltammetry as described previously.^{10,15,16,20}

Acknowledgment. This research was supported by a grant from the donors of the Petroleum Research Fund, administered by the American Chemical Society, and by the National Science Foundation.

(20) Bordwell, F. G.; Zhang, X.-M.; Cheng, J.-P. J. Org. Chem. 1993, 58, 6410-6416.

(21) We thank a referee for pointing out this relationship.